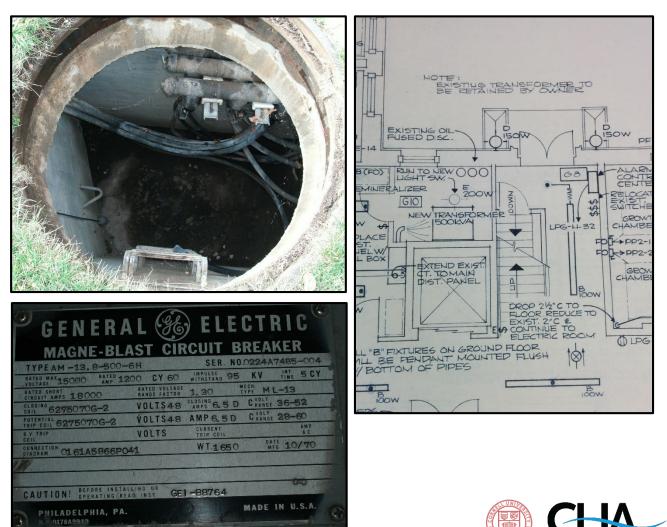

Cornell University AgriTech Campus in Geneva, NY Electrical Master Planning, Substation, Distribution and Building Service Entrance Upgrades

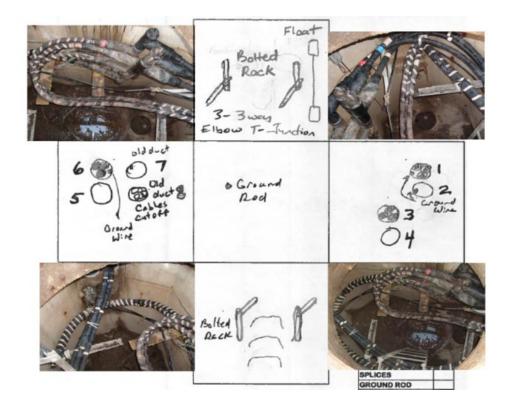
Presented by: **Nik Terpak, PEng | CHA** Electrical Project Engineer – High Voltage Electrical Group

Agenda

- Campus Electrical Master Planning Process
- Cornell University AgriTech Case Study
- Substation Upgrades
- Distribution System Upgrades
- Building Service Entrance Upgrades

Campus Electrical Master Planning Process Site Survey and Investigation


- Inspection of:
 - Main substation
 - Medium voltage distribution system
 - Building service entrances.
- Visual Inspection:
 - Equipment nameplate data age, condition
 - E-Room safety and code compliance.
- Equipment settings.
- Electrician experience and institutional system knowledge.



Campus Electrical Master Planning Process Site Survey and Investigation

- Site Utility Survey
- Manhole Investigation:
 - Butterfly Diagrams
- Infrared Survey
- Hazardous Material Survey:
 - Asbestos, etc.
- Document Review:
 - Previous studies/engineering drawings.
 - Equipment drawings/manuals.
 - Maintenance records.
 - Historical metering data load, PF, Harmonics.

Campus Electrical Master Planning Process Site Survey and Investigation

			N	1anhole -19						
	Conduits					Cable				
Duct #	From	То	Size	Туре	# of Cables	Voltage	Size	Туре		
1	MH-18 Duct 4	T-Junction	4"	Rigid	3	15 kV	500 mcm			
2	MH-18 Duct 3	spare	4"	Rigid						
3	T-Junction	Building 56	4"	Rigid	3	15 kV	500 mcm			
4	spare	Building 56	4"	Rigid						
5	spare	MH-20 Duct 1	4"	Rigid						
6	T-Junction	MH-20 Duct 2	4"	Rigid	3	15 kV	500 mcm			

		SPLICES				
		GROUND ROD				
		DRAIN				
MANHOLE:		MANHOLE CONDITIONS AND PROBLEMS:				
INSP. DATE		- Fair to Good Condition	-			
INSP. BY		- Fair to Good Condition				
LOCATION:		RACKING TYPE & CONDITIONS :				
SUMP	YES / NO	- Buttedon Racking Good Conditio	5			
DRAIN	YES / NO	GROUNDING & CONDITIONS :				
WATER LEVEL	wet	GROUND ROD GEST NO.				
DIMENSIONS		RING GROUND YES MO				
RING DIAMETER		STRUCTURAL CONDITIONS:				
FLOOR TO CEILING		EXPOSED REBAR YES / NO				
		CHIPPING CONCRETE YES (NO)				

Campus Electrical Master Planning Process Analysis and Evaluation

- Power System Study:
 - Arc Flash.
 - Protection Coordination.
 - Short Circuit.
- System Condition Matrix:
 - Age, condition, system study.
- System Configuration Analysis:
 - Substation/Distribution loops, building Dual Feeds / Bus Tie's.

- Electrical Room Conditions:
 - Code Compliance:
 - Working Clearance, Egress.
 - Grounding.
 - Mechanical Ventilation.
 - Fire Detection.
- Power Analysis:
 - Loading Analysis.
 - Power Factor Analysis.
 - Harmonics Analysis (if data available).

Campus Electrical Master Planning Process Master Plan Report

- Power System Study.
- Arc Flash Stickers.
- Equipment Condition Matrices.
- Prioritized Improvement List:
 - Substation, Distribution, Buildings.
 - Equipment upgrades.
 - System re-configurations.
 - AF, coordination improvements.
- ROM Costs for improvements.
- High level schedule, based on resources.

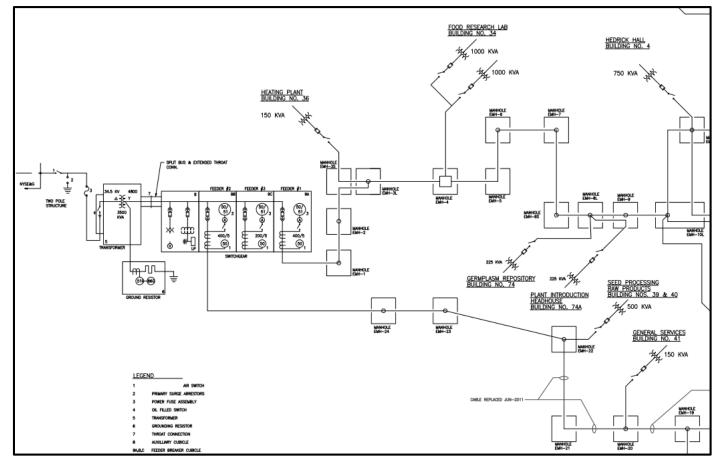
CATEGORY	Exposed Primary System	Primary Fused Switch Age/condition	Xfmr Age condition	Room Condition	Arc Flash/Fault Level	Secondary Gear Duty Rating	Secondary Gear Age/Condition	TOTAL SCORE	RANK
Weighting Factor	10	5	7	2	15	15	7	61	
Blg 36	0	3	3	1	4	0	3	119	11
Blg 34 A and B	0	4	4	3	5	0	4	157	4
Blg 74	0	4	4	3	4	0	4	142	7
Blg 74A	0	4	4	2	5	0	4	155	5
Blg 4	5	5	5	4	4	0	5	213	1
Blg 1	0	4	4	1	4	0	4	138	10
Blg 5	0	4	4	2	4	0	4	140	8
Blg 10	0	2	2	1	4	0	2	100	12
Blg 10K	0	3	3	1	4	0	3	119	11
Blg 35	0	4	4	2	5	2	4	185	2
Blg 53	0	5	5	3	4	0	4	154	6
Blg 56	0	4	4	1	4	0	4	138	9
Blg 41	0	5	5	1	3	0	5	142	7
Blg 39&40	0	5	5	1	5	0	5	172	3

Exposed Primary Sy	stem	Arc Flash Fa	ult Level
0	N/A	0	N/A
5	Hazardous Condition	1	NFPA 70E Hazard Cat 1
Age/Condition		2	NFPA 70E Hazard Cat 2
0	New	3	NFPA 70E Hazard Cat 3
1	1-5 years	4	NFPA 70E Hazard Cat 4
2	6-15 years	5	> 40 cal/cm2
3	16-25 years	Secondary G	Gear Duty Rating
4	26-35 years	0	N/A
5	35+ years	1	60 to 70%
Room Condition		2	70 to 80%
0	N/A	3	80 to 90%
1	very good condition	4	90 to 100%
2	good condition	5	> 110% of Rating
3	fair to questionable condition		
4	Poor condition		
5	Needs attention		

Campus Electrical Master Planning Process Master Plan Report

CATEGORY	Structural Integrity	Drainage System	Grounding	Racking System		
Weighting Factor	10	3	2	3	TOTAL SCORE 18	RANK
EMH-1	2	1	0	2	29	12
EMH-2	3	1	0	2	39	11
EMH-3L	3	1	5	2	49	8
EMH-3S	3	5	5	2	61	3
EMH-4	2	5	5	2	51	7
EMH-5	2	1	5	2	39	11
EMH-6	2	5	5	2	51	7
EMH-7	2	1	0	2	29	12
EMH-8S	2	1	0	2	29	12
EMH-8L	4	5	0	2	61	3
EMH-9	3	5	0	2	51	7
EMH-10L	4	5	0	1	58	5
EMH-10S	4	1	0	2	49	8
EMH-11	3	1	5	4	55	6
EMH-12	2	5	5	2	51	7
EMH-12A	4	5	5	5	80	1
EMH-12B	2	5	5	5	60	4
EMH-13	4	5	0	2	61	3
EMH-14	3	2	0	2	42	10
EMH-15	3	5	5	2	61	3
EMH-16	2	5	2	2	45	9
EMH-17	2	5	5	2	51	7
EMH-18	2	5	2	2	45	9
EMH-19	3	5	2	2	55	6
EMH-20	4	5	5	2	71	2
EMH-21	1	1	5	2	29	12
EMH-22	2	3	5	2	45	9
EMH-23	4	4	2	5	71	2
EMH-24	2	1	2	2	27	13

Cornell University – AgriTech Campus Campus Summary



- 8 nearby research farms, totaling 850 acres.
- 65,000 square feet of greenhouse space.
- Fruit and vegetable processing facilities
- Refrigerated and controlled atmosphere storage.
- 3MW Electrical Substation.
- 14 Buildings:
 - Research facilities, laboratory buildings and office space.

Cornell University – AgriTech Campus Electrical System Summary

- 34.5kV Substation:
 - 34.5kV overhead line switch
 - 34.5kV-4.8kV, 3MVA Transformer.
 - 4.8kV switchgear with 2 loop feeders.
 - Peak load of 1.5MVA.
- 4.8kV Distribution:
 - Underground distribution loop of 500kcmil in concrete ductbanks.
 - Manhole 3-way junctions and splices to buildings.
- 14 MV building service entrances:
 - Switches, transformers, LV (208 or 480V) gear.

Main Substation Assessment

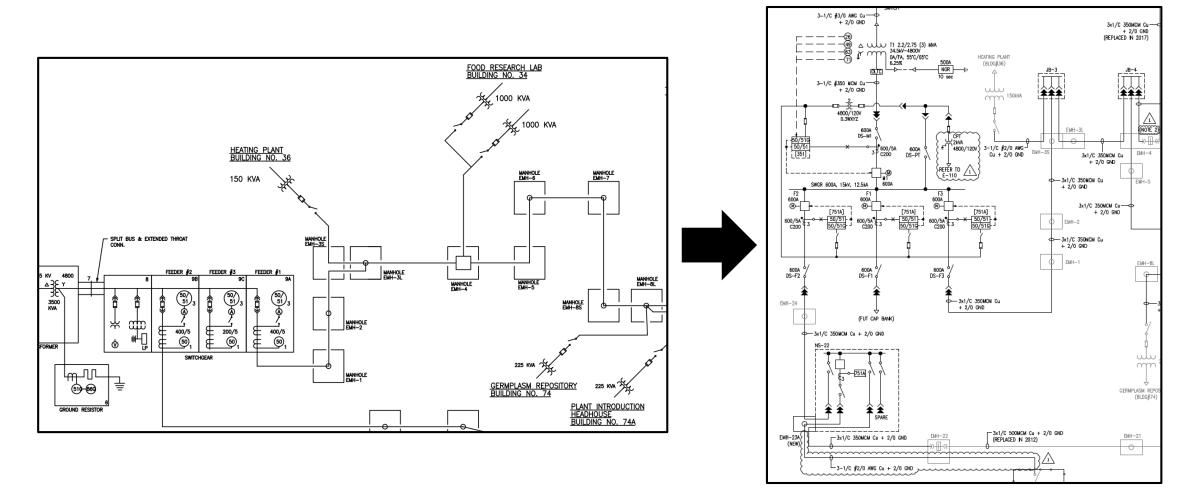
- Equipment age of ~50 years, past expected life.
- 34.5kV switch marked 'Do Not Operate', manufacturer instruction.
- Transformer:
 - On-load tap changer (OLTC):
 - Monitored change counter.
 - Infrared identified some radiator blockages.
 - ~40% peak loaded.
- 4.8kV switchgear:
 - Old electro-mechanical relays lack of coordination.
 - One breaker unable to electrically switch.

Main Substation Recommendations

- Replace all major equipment and cable.
- Slightly Downsized Transformer.
- Maintain OLTC.
- Replace 4.8kV switchgear with SF6 relay-managed pad-mount switch.
- Install in empty substation space, to minimize construction outage.

Medium Voltage Distribution Assessment

- Manhole and Conduit evaluation:
 - ~40% of ductbank was found to be compromised (not useable).
 - One manhole found to be structurally concerning (old, brick).
- 4.8kV System Considerations:
 - Capacity vs. Cable Size vs. Conduit fill.
 - Vs. 4.16kV system high TX replacement costs.
- Cable/Switch evaluation:
 - Majority of cable is ~50 years old, past its expected life: Experienced failures 2011.
 - Manhole junction configuration and one mid-way loop switch:
 - Lack of selective switching and increased outage impact.
 - Poor access, operability of manhole junctions.
 - Unsafe mid-point switch


Medium Voltage Distribution Recommendations

- Replace all old cable (50 years old).
- Install new ductbank, as needed, to abandoned compromised ductbank sections.
- Install strategically placed pad-mounted loop switches to allow for more selective switching and reduce the impact of outages.
- Install pad-mounted junction boxes to provide easier access to remove building junctions during switching.
- Construction phasing switching orders:
 - Configured to replace all cable with five ~4h building outages.

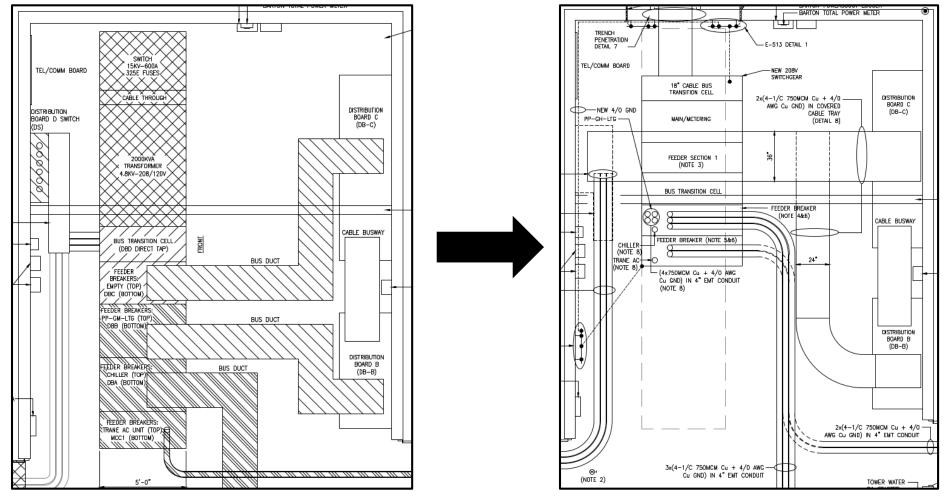
Medium Voltage Distribution Recommendations



Building Service Entrance Upgrades Assessment

- 85% of building entrances ~50 years old, past design life.
- 30% of buildings had 'extreme danger' arc flash conditions.
- Areas of unsafe equipment or conditions:
 - Manufacturer 'Do Not Operate' direction.
 - Exposed fuse cutouts in E-Room.

Building Service Entrance Upgrades Recommendations



- All services past their design life should be upgraded.
- Priority list of building upgrades produced.
- Top 5 priority buildings included arc flash safety hazards or unsafe equipment conditions.
- Recommended to perform 5 top priority upgrades in one construction package:
 - New MV switch, MV transformer and LV switchgear.
- Construction phasing plans (staged demo/install) produced to install in parallel and use temporary generators to keep all outages to >8h.

Building Service Entrance Upgrades

Recommendations

Completed Upgrades

Main Substation

- All equipment and cabling replaced, per recommendations.
- All old equipment removed.

Distribution

- New ductbank installed and all old cable replaced.
- New pad-mounted switches and junction boxes installed, per recommendations.
- All old cable removed.

Building Service Entrances

• Upgrades to be completed in 2020 for 5 highest priority buildings.

Completed Upgrades

Questions?

Cornell University AgriTech Campus in Geneva, NY

Electrical Master Planning, Substation, Distribution and Building Service Entrance Upgrades

